The Buildroot user manual

The Buildroot user manual

The Buildroot user manual ii
I Getting started 1
1 About Buildroot 2
2 System requirements 3
2.1 Mandatory packages e e e e e e e e e e e 3

2.2 Optional packages e e e e e 4

3 Getting Buildroot 5
4 Buildroot quick start 6
5 Community resources 8
IT User guide 9
6 Buildroot configuration 10
6.1 Cross-compilation toolchain L e 10
6.1.1 Internal toolchain backend L 11

6.1.2 External toolchainbackend L 11

6.1.2.1 External toolchain wrapper 12

6.2 /devmanagement L e e e e e 13

6.3 INIESYSIBIM o o o o e e e e e e e e e e e e e e e e e e e 13

7 Configuration of other components 15
8 General Buildroot usage 16
8.1 make tiPS o e e e e e e e e e e 16

8.2 Understanding when a full rebuild is necessary L e 18

8.3 Understanding how to rebuild packages L 19

8.4 Offlinebuilds 19

8.5 Buildingout-of-tree L e e e e e e e e e 19

The Buildroot user manual iii
8.6 Environment variables L 20
8.7 Dealing efficiently with filesystem imageso 21
8.8 Graphing the dependencies between packages 21
8.9 Graphing the build duration L e e e e 22
8.10 Graphing the filesystem size contribution of packages oL 23
8.11 Integration with Eclipse 23
812 Advanced USage i e e e e e e e e e e 24

8.12.1 Using the generated toolchain outside Buildroot o Lo 24
8.12.2 Using gdbin Buildroot 24
8.12.3 Using ccacheinBuildroot L 25
8.12.4 Location of downloaded packages e 25
8.12.5 Package-specific make targets L e e e e e e e 25
8.12.6 Using Buildroot during development 26

9 Project-specific customization 29

9.1 Recommended directory StrUCtUI® L e e e e e e e e 29
9.1.1 Implementing layered customizations oL 30

9.2 Keeping customizations outside of Buildroot L 31
9.2.1 Layoutofabr2-externaltree L e e e e e e 32
9.2.1.1 Theexternal.descfile e 32

9.2.1.2 TheConfig.inand external.mkfiles 33

9.2.1.3 The configs/ directory o v i i i e e e e e 33

9.2.1.4 Free-formcontent 33

9.2.1.5 Examplelayout 33

9.3 Storing the Buildroot configuration e e 35
9.4 Storing the configuration of other components e 35
9.5 Customizing the generated target filesystem 36
9.5.1 Setting file permissions and ownership and adding custom devicesnodes 38

9.6 Adding CuStOM USET ACCOUNLS v v v v e et e e e e e e e e e e e e e e e e e 38
9.7 Customization after the images have beencreated e 38
9.8 Adding project-specific patches L. e e e e 38
9.9 Adding project-specific packages L e 39
9.10 Quick guide to storing your project-specific customizations o 40

10 Frequently Asked Questions & Troubleshooting 42
10.1 The boot hangs after Starting network... e e 42
10.2 Why is there no compiler on the target? e e e e 42
10.3 Why are there no development files on the target? e 43
10.4 Why is there no documentation on the target? Lo L 43
10.5 Why are some packages not visible in the Buildroot config menu? 43
10.6 Why not use the target directory as a chroot directory? L 43
10.7 Why doesn’t Buildroot generate binary packages (.deb, .ipkg...)? oo 43
10.8 How to speed-up the build process? L e 44

The Buildroot user manual iv
11 Known issues 46
12 Legal notice and licensing 47
12.1 Complying with open source licenses o i e 47
12.2 Complying with the Buildroot license e 48
12.2.1 Patchestopackages o o i e e e e e e e 48

13 Beyond Buildroot 49
13.1 Bootthe generated images o i i e e e e e e e e e e e e e e 49
13.1.1 NESDoOt 49

13.1.2 Live CD o o 49

13.2 Chroot o o e e e 50
III Developer guide 51
14 How Buildroot works 52
15 Coding style 53
15.1 Config.infile e 53
152 The .mk file L e 53
15.3 The documentation e e e e e e e e 55
15.4 SUpport SCriptsS o o o e e e e e e e e e 55

16 Adding support for a particular board 56
17 Adding new packages to Buildroot 57
17.1 Package dir€Ctory o it e e e e e e e e e e e e 57
17.2 Config files e e 57
17.2.1 Config.infile e e e e e e e 57

17.2.2 Config.in.hostfile o e 58

17.2.3 Choosing depends onor selecCt o v i v v v i i i it e e e e e e 59

17.2.4 Dependencies on target and toolchain options o 60

17.2.5 Dependencies on a Linux kernel built by buildroot 62

17.2.6 Dependencies on udev /dev management o it e e e e e e e e 62

17.2.7 Dependencies on features provided by virtual packages L. 63

173 The .mk file L 63
17.4 The .hashfile 63
17.5 Infrastructure for packages with specific build systems L L oo 65
17.5.1 generic-packagetutorial e e e e e e 65

17.5.2 generic-packagereference e 67

17.6 Infrastructure for autotools-based packages L e 71

The Buildroot user manual \

17.6.1 autotools—packagetutorial e e e 71
17.6.2 autotools-packagereference e 72
17.7 Infrastructure for CMake-based packages 73
17.7.1 cmake—-packagetutorial e 73
17.7.2 cmake-packagereference L 74
17.8 Infrastructure for Python packages e e 75
17.8.1 python-packagetutorial L 75
17.8.2 python-packagereference i e e e e e e e e 76
17.8.3 Generating a python-package froma PyPlrepository 77
17.8.4 python-package CFFIbackend e 78
17.9 Infrastructure for LuaRocks-based packages L 78
17.9.1 luarocks—-packagetutorial e e e 78
17.9.2 luarocks-packagereference 79
17.10Infrastructure for Perl/CPAN packages e e e e e 80
17.10.1 perl-package tutorial L e e 80
17.102 perl-packagereference e e e e e 80
17.11Infrastructure for virtual packages e e 81
17.11.1 virtual-package tutorial e e e e e e e e 81
17.11.2 Virtual package’s Config.infile 81
17.11.3 Virtual package’s .mk file e e e 82
17.11.4 Provider’s Config.infile e 82
17.11.5Provider’s .mk file L 82
17.11.6 Notes on depending on a virtual package L 82
17.11.7 Notes on depending on a specific provider e 83
17.12Infrastructure for packages using kconfig for configurationfiles 83
17.13Infrastructure for rebar-based packages L e e 84
17.13.1 rebar-packagetutorialo e 84
17.13.2 rebar—-packagereference e e e e e e 85
17.14Infrastructure for Waf-based packages L L 85
17.14.1 waf-package tutorial e e e e e e e e e 85
17.142waf-packagereference L e e 86
17.15Infrastructure for Meson-based packages e 87
17.15.1meson-package tutorial L e 87
17.152meson—-packagereference e e e e e e e 87
17.16Integration of Cargo-based packages L e 88
17.16.1 Cargo-based package’s Config.infile L 88
17.16.2 Cargo-based package’s .mk file oL 88
17.16.3 About Dependencies Management v vttt e e e e e e e e e e e e e e e 89

17.17Infrastructure for Go packages e 89

The Buildroot user manual Vi

17.17.1 golang-package tutorial L 90

17.17.2 golang—-packagereference e 90
17.18Infrastructure for packages building kernel modules L L L oL 91
17.18.1 kernel-moduletutorial L L e e 91
17.182kernel-modulereference e 92
17.19Infrastructure for asciidoc documents oL e e e 93
17.19.1 asciidoc—-document tutorial e 93

17.19.2 asciidoc—document reference 94
17.20Infrastructure specific to the Linux kernel package L o 95
17.20.1 linux-kernel-tools oL e 95

17.20.2 linux-Kernel-exXtensionso e e e e e e e e e 96
17.21Hooks available in the various build steps L 97
17.21.1 Using the POST_RSYNC hook o . o s e e e 98

17.21.2 Target-finalize hook o L e e 98
17.22Gettext integration and interaction with packages oL 0oL o oo 98
17.23Tipsand tricks L L e e 99
17.23.1 Package name, config entry name and makefile variable relationship 99
17.23.2How to check the coding style 99

17233 How totestyourpackage e 99
17.23.4How to add a package from GitHub L 101
17.24C0oNCIUSION L L e e e e e e 101

18 Patching a package 102
18.1 Providing patches o e e e e e 102
18.1.1 Downloaded e 102

18.1.2 Within Buildroot 102

18.1.3 Global patch directory e e e e e e e e 103

18.2 How patches are applied e 103
18.3 Format and licensing of the package patches 103
18.4 Integrating patches foundonthe Web L 104

19 Download infrastructure 105
20 Debugging Buildroot 106
21 Contributing to Buildroot 107
21.1 Reproducing, analyzing and fixing bugs 107
21.2 Analyzing and fixing autobuild failures 107
21.3 Reviewing and testing patches L e e e e e e e e e 108

21.3.1 Applying Patches from Patchwork oo 109

The Buildroot user manual Vii

21.4 Work on items from the TODO List e e 109
21.5 Submitting patches L e 109
21.5.1 The formattingof apatch e 109

21.5.2 Preparing apatch series e 110

21.53 Coverletter L e e 111

21.5.4 Patchrevision changelog e e e 112

21.6 Reporting issues/bugs or gettinghelpo 113

22 DEVELOPERS file and get-developers 114
IV Appendix 115
23 Makedev syntax documentation 116
24 Makeusers syntax documentation 118
25 Migrating from older Buildroot versions 120
25.1 Migrating to 2016.11 L L 120

25.2 Migrating to 2017.08 L L e e e 120

The Buildroot user manual viii

Buildroot 2019.02.6 manual generated on 2019-10-03 15:16:26 UTC from git revision 4564d8397

The Buildroot manual is written by the Buildroot developers. It is licensed under the GNU General Public License, version 2.
Refer to the COPYING file in the Buildroot sources for the full text of this license.

Copyright © 2004-2019 The Buildroot developers

logo.png

http://git.buildroot.org/buildroot/tree/COPYING?id=4564d8f3977a6ed448edf9567f4eb6a6b8c127c8

The Buildroot user manual 1/120

Part 1

Getting started

The Buildroot user manual 2/120

Chapter 1

About Buildroot

Buildroot is a tool that simplifies and automates the process of building a complete Linux system for an embedded system, using
cross-compilation.

In order to achieve this, Buildroot is able to generate a cross-compilation toolchain, a root filesystem, a Linux kernel image and a
bootloader for your target. Buildroot can be used for any combination of these options, independently (you can for example use
an existing cross-compilation toolchain, and build only your root filesystem with Buildroot).

Buildroot is useful mainly for people working with embedded systems. Embedded systems often use processors that are not
the regular x86 processors everyone is used to having in his PC. They can be PowerPC processors, MIPS processors, ARM
processors, etc.

Buildroot supports numerous processors and their variants; it also comes with default configurations for several boards available
off-the-shelf. Besides this, a number of third-party projects are based on, or develop their BSP ! or SDK 2 on top of Buildroot.

IBSP: Board Support Package
2SDK: Software Development Kit

The Buildroot user manual 3/120

Chapter 2

System requirements

Buildroot is designed to run on Linux systems.

While Buildroot itself will build most host packages it needs for the compilation, certain standard Linux utilities are expected
to be already installed on the host system. Below you will find an overview of the mandatory and optional packages (note that
package names may vary between distributions).

2.1 Mandatory packages

¢ Build tools:

— which

- sed

— make (version 3.81 or any later)

- binutils

— build-essential (only for Debian based systems)
— gcc (version 4.4 or any later)

— g++ (version 4.4 or any later)

— bash

- patch

- gzip

- bzip2

— perl (version 5.8.7 or any later)

- tar

- cpio

— python (version 2.7 or any later)

- unzip

— rsync

— file (mustbein /usr/bin/file)
- bc

Source fetching tools:

- wget

The Buildroot user manual 4/120

2.2 Optional packages

* Configuration interface dependencies:
For these libraries, you need to install both runtime and development data, which in many distributions are packaged separately.
The development packages typically have a -dev or -devel suffix.
— ncursesb5 to use the menuconfig interface
— gt4 to use the xconfig interface

- glib2, gtk2 and glade? to use the gconfig interface

* Source fetching tools:
In the official tree, most of the package sources are retrieved using wget from fip, http or https locations. A few packages are
only available through a version control system. Moreover, Buildroot is capable of downloading sources via other tools, like
rsync or scp (refer to Chapter 19 for more details). If you enable packages using any of these methods, you will need to
install the corresponding tool on the host system:
- bazaar
- Cvs
- git
- mercurial
— rsync
- scp

— subversion

* Java-related packages, if the Java Classpath needs to be built for the target system:

— The javac compiler

— The jar tool

* Documentation generation tools:

asciidoc, version 8.6.3 or higher
— w3m

— python with the argparse module (automatically present in 2.7+ and 3.2+)

dblatex (required for the pdf manual only)
* Graph generation tools:

— graphviz to use graph-depends and <pkg>-graph-depends
— python-matplotlib to use graph-build

The Buildroot user manual 5/120

Chapter 3

Getting Buildroot

Buildroot releases are made every 3 months, in February, May, August and November. Release numbers are in the format
YYYY.MM, so for example 2013.02, 2014.08.

Release tarballs are available at http://buildroot.org/downloads/.

For your convenience, a Vagrantfile is available in support/misc/Vagrantfile inthe Buildroot source tree to quickly set
up a virtual machine with the needed dependencies to get started.

If you want to setup an isolated buildroot environment on Linux or Mac Os X, paste this line onto your terminal:

curl -0 https://buildroot.org/downloads/Vagrantfile; vagrant up

If you are on Windows, paste this into your powershell:

(new-object System.Net.WebClient) .DownloadFile (
"https://buildroot.org/downloads/Vagrantfile", "Vagrantfile");
vagrant up

If you want to follow development, you can use the daily snapshots or make a clone of the Git repository. Refer to the Download
page of the Buildroot website for more details.

http://buildroot.org/downloads/
https://www.vagrantup.com/
http://buildroot.org/download
http://buildroot.org/download

The Buildroot user manual 6/120

Chapter 4

Buildroot quick start

Important: you can and should build everything as a normal user. There is no need to be root to configure and use Buildroot.
By running all commands as a regular user, you protect your system against packages behaving badly during compilation and
installation.

The first step when using Buildroot is to create a configuration. Buildroot has a nice configuration tool similar to the one you can
find in the Linux kernel or in BusyBox.

From the buildroot directory, run

$ make menuconfig

for the original curses-based configurator, or

$ make nconfig

for the new curses-based configurator, or

$ make xconfig

for the Qt-based configurator, or

$ make gconfig

for the GTK-based configurator.

All of these "make" commands will need to build a configuration utility (including the interface), so you may need to install
"development" packages for relevant libraries used by the configuration utilities. Refer to Chapter 2 for more details, specifically
the optional requirements to get the dependencies of your favorite interface.

For each menu entry in the configuration tool, you can find associated help that describes the purpose of the entry. Refer to
Chapter 6 for details on some specific configuration aspects.

Once everything is configured, the configuration tool generates a . config file that contains the entire configuration. This file
will be read by the top-level Makefile.

To start the build process, simply run:

S make

http://www.kernel.org/
http://www.busybox.net/

The Buildroot user manual 7/120

You should never use make -—jN with Buildroot: top-level parallel make is currently not supported. Instead, use the BR2_JLEVEL
option to tell Buildroot to run the compilation of each individual package with make -7jN.

The make command will generally perform the following steps:

* download source files (as required);

* configure, build and install the cross-compilation toolchain, or simply import an external toolchain;
* configure, build and install selected target packages;

* build a kernel image, if selected;

* build a bootloader image, if selected;

* create a root filesystem in selected formats.
Buildroot output is stored in a single directory, output /. This directory contains several subdirectories:

* images/ where all the images (kernel image, bootloader and root filesystem images) are stored. These are the files you need
to put on your target system.

* build/ where all the components are built (this includes tools needed by Buildroot on the host and packages compiled for
the target). This directory contains one subdirectory for each of these components.

* staging/ which contains a hierarchy similar to a root filesystem hierarchy. This directory contains the headers and libraries
of the cross-compilation toolchain and all the userspace packages selected for the target. However, this directory is not intended
to be the root filesystem for the target: it contains a lot of development files, unstripped binaries and libraries that make it far
too big for an embedded system. These development files are used to compile libraries and applications for the target that
depend on other libraries.

* target/ which contains almost the complete root filesystem for the target: everything needed is present except the device
files in /dev/ (Buildroot can’t create them because Buildroot doesn’t run as root and doesn’t want to run as root). Also, it
doesn’t have the correct permissions (e.g. setuid for the busybox binary). Therefore, this directory should not be used on
your target. Instead, you should use one of the images built in the images/ directory. If you need an extracted image of
the root filesystem for booting over NFS, then use the tarball image generated in images/ and extract it as root. Compared
to staging/, target/ contains only the files and libraries needed to run the selected target applications: the development
files (headers, etc.) are not present, the binaries are stripped.

* host/ contains the installation of tools compiled for the host that are needed for the proper execution of Buildroot, including
the cross-compilation toolchain.

These commands, make menuconfig|nconfig|gconfig|xconfig and make, are the basic ones that allow to easily

and quickly generate images fitting your needs, with all the features and applications you enabled.

More details about the "make" command usage are given in Section 8.1.

The Buildroot user manual 8/120

Chapter 5

Community resources

Like any open source project, Buildroot has different ways to share information in its community and outside.

Each of those ways may interest you if you are looking for some help, want to understand Buildroot or contribute to the project.

Mailing List
Buildroot has a mailing list for discussion and development. It is the main method of interaction for Buildroot users and
developers.
Only subscribers to the Buildroot mailing list are allowed to post to this list. You can subscribe via the mailing list info
page.

Mails that are sent to the mailing list are also available in the mailing list archives and via Gmane, at gmane . comp. 1ib.uclibc

Please search the mailing list archives before asking questions, since there is a good chance someone else has asked the
same question before.

IRC
The Buildroot IRC channel #buildroot is hosted on Freenode. It is a useful place to ask quick questions or discuss on
certain topics.

When asking for help on IRC, share relevant logs or pieces of code using a code sharing website, such as http://code.bulix.org.

Note that for certain questions, posting to the mailing list may be better as it will reach more people, both developers and
users.

Bug tracker
Bugs in Buildroot can be reported via the mailing list or alternatively via the Buildroot bugtracker. Please refer to Sec-
tion 21.6 before creating a bug report.

Wiki
The Buildroot wiki page is hosted on the eLinux wiki. It contains some useful links, an overview of past and upcoming
events, and a TODO list.

Patchwork
Patchwork is a web-based patch tracking system designed to facilitate the contribution and management of contributions to
an open-source project. Patches that have been sent to a mailing list are ’caught’ by the system, and appear on a web page.
Any comments posted that reference the patch are appended to the patch page too. For more information on Patchwork
see http://jk.ozlabs.org/projects/patchwork/.

Buildroot’s Patchwork website is mainly for use by Buildroot’s maintainer to ensure patches aren’t missed. It is also used
by Buildroot patch reviewers (see also Section 21.3.1). However, since the website exposes patches and their corresponding
review comments in a clean and concise web interface, it can be useful for all Buildroot developers.

The Buildroot patch management interface is available at http://patchwork.buildroot.org.

http://lists.buildroot.org/mailman/listinfo/buildroot
http://lists.buildroot.org/mailman/listinfo/buildroot
http://lists.buildroot.org/pipermail/buildroot
http://gmane.org
http://dir.gmane.org/gmane.comp.lib.uclibc.buildroot
irc://freenode.net/#buildroot
http://webchat.freenode.net
http://code.bulix.org
https://bugs.buildroot.org/buglist.cgi?product=buildroot
http://elinux.org/Buildroot
http://elinux.org
http://jk.ozlabs.org/projects/patchwork/
http://patchwork.buildroot.org

The Buildroot user manual 9/120

Part 11

User guide

The Buildroot user manual 10/120

Chapter 6

Buildroot configuration

All the configuration options in make xconfig have a help text providing details about the option.

The make *config commands also offer a search tool. Read the help message in the different frontend menus to know how
to use it:

* in menuconfig, the search tool is called by pressing /;

* in xconfig, the search tool is called by pressing Ctrl + £.

The result of the search shows the help message of the matching items. In menuconfig, numbers in the left column provide a
shortcut to the corresponding entry. Just type this number to directly jump to the entry, or to the containing menu in case the
entry is not selectable due to a missing dependency.

Although the menu structure and the help text of the entries should be sufficiently self-explanatory, a number of topics require
additional explanation that cannot easily be covered in the help text and are therefore covered in the following sections.

6.1 Cross-compilation toolchain

A compilation toolchain is the set of tools that allows you to compile code for your system. It consists of a compiler (in our
case, gcc), binary utils like assembler and linker (in our case, binutils) and a C standard library (for example GNU Libc,
uClibc-ng).

The system installed on your development station certainly already has a compilation toolchain that you can use to compile an
application that runs on your system. If you’re using a PC, your compilation toolchain runs on an x86 processor and generates
code for an x86 processor. Under most Linux systems, the compilation toolchain uses the GNU libc (glibc) as the C standard
library. This compilation toolchain is called the "host compilation toolchain". The machine on which it is running, and on which
you’re working, is called the "host system" !.

The compilation toolchain is provided by your distribution, and Buildroot has nothing to do with it (other than using it to build a
cross-compilation toolchain and other tools that are run on the development host).

As said above, the compilation toolchain that comes with your system runs on and generates code for the processor in your host
system. As your embedded system has a different processor, you need a cross-compilation toolchain - a compilation toolchain
that runs on your host system but generates code for your farget system (and target processor). For example, if your host system
uses x86 and your target system uses ARM, the regular compilation toolchain on your host runs on x86 and generates code for
x86, while the cross-compilation toolchain runs on x86 and generates code for ARM.

Buildroot provides two solutions for the cross-compilation toolchain:

* The internal toolchain backend, called Buildroot toolchain in the configuration interface.

I'This terminology differs from what is used by GNU configure, where the host is the machine on which the application will run (which is usually the same
as target)

http://www.gnu.org/software/libc/libc.html
http://www.uclibc-ng.org/

The Buildroot user manual 11/120

* The external toolchain backend, called External toolchain in the configuration interface.

The choice between these two solutions is done using the Toolchain Type option in the Toolchain menu. Once one
solution has been chosen, a number of configuration options appear, they are detailed in the following sections.

6.1.1 Internal toolchain backend

The internal toolchain backend is the backend where Buildroot builds by itself a cross-compilation toolchain, before building the
userspace applications and libraries for your target embedded system.

This backend supports several C libraries: uClibc-ng, glibc and musl.

Once you have selected this backend, a number of options appear. The most important ones allow to:

* Change the version of the Linux kernel headers used to build the toolchain. This item deserves a few explanations. In the
process of building a cross-compilation toolchain, the C library is being built. This library provides the interface between
userspace applications and the Linux kernel. In order to know how to "talk" to the Linux kernel, the C library needs to have
access to the Linux kernel headers (i.e. the .h files from the kernel), which define the interface between userspace and the
kernel (system calls, data structures, etc.). Since this interface is backward compatible, the version of the Linux kernel headers
used to build your toolchain do not need to match exactly the version of the Linux kernel you intend to run on your embedded
system. They only need to have a version equal or older to the version of the Linux kernel you intend to run. If you use
kernel headers that are more recent than the Linux kernel you run on your embedded system, then the C library might be using
interfaces that are not provided by your Linux kernel.

* Change the version of the GCC compiler, binutils and the C library.

* Select a number of toolchain options (uClibc only): whether the toolchain should have RPC support (used mainly for NFS),
wide-char support, locale support (for internationalization), C++ support or thread support. Depending on which options you
choose, the number of userspace applications and libraries visible in Buildroot menus will change: many applications and
libraries require certain toolchain options to be enabled. Most packages show a comment when a certain toolchain option is
required to be able to enable those packages. If needed, you can further refine the uClibc configuration by running make
uclibc-menuconfig. Note however that all packages in Buildroot are tested against the default uClibc configuration
bundled in Buildroot: if you deviate from this configuration by removing features from uClibc, some packages may no longer
build.

It is worth noting that whenever one of those options is modified, then the entire toolchain and system must be rebuilt. See
Section 8.2.

Advantages of this backend:

* Well integrated with Buildroot

* Fast, only builds what’s necessary
Drawbacks of this backend:

* Rebuilding the toolchain is needed when doing make clean, which takes time. If you’re trying to reduce your build time,
consider using the External toolchain backend.

6.1.2 External toolchain backend

The external toolchain backend allows to use existing pre-built cross-compilation toolchains. Buildroot knows about a number of
well-known cross-compilation toolchains (from Linaro for ARM, Sourcery CodeBench for ARM, x86-64, PowerPC, and MIPS,
and is capable of downloading them automatically, or it can be pointed to a custom toolchain, either available for download or
installed locally.

Then, you have three solutions to use an external toolchain:

http://www.uclibc-ng.org
http://www.gnu.org/software/libc/libc.html
http://www.musl-libc.org
http://www.linaro.org
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/

The Buildroot user manual 12/120

» Use a predefined external toolchain profile, and let Buildroot download, extract and install the toolchain. Buildroot already
knows about a few CodeSourcery and Linaro toolchains. Just select the toolchain profile in Toolchain from the available
ones. This is definitely the easiest solution.

* Use a predefined external toolchain profile, but instead of having Buildroot download and extract the toolchain, you can tell
Buildroot where your toolchain is already installed on your system. Just select the toolchain profile in Toolchain through
the available ones, unselect Download toolchain automatically, and fill the Toolchain path text entry with
the path to your cross-compiling toolchain.

* Use a completely custom external toolchain. This is particularly useful for toolchains generated using crosstool-NG or
with Buildroot itself. To do this, select the Custom toolchain solution in the Toolchain list. You need to fill the
Toolchain path, Toolchain prefix and External toolchain C library options. Then, you have to tell
Buildroot what your external toolchain supports. If your external toolchain uses the glibc library, you only have to tell whether
your toolchain supports C++ or not and whether it has built-in RPC support. If your external toolchain uses the uClibc library,
then you have to tell Buildroot if it supports RPC, wide-char, locale, program invocation, threads and C++. At the beginning
of the execution, Buildroot will tell you if the selected options do not match the toolchain configuration.

Our external toolchain support has been tested with toolchains from CodeSourcery and Linaro, toolchains generated by crosstool-
NG, and toolchains generated by Buildroot itself. In general, all toolchains that support the sysroot feature should work. If not,
do not hesitate to contact the developers.

We do not support toolchains or SDK generated by OpenEmbedded or Yocto, because these toolchains are not pure toolchains (i.e.
just the compiler, binutils, the C and C++ libraries). Instead these toolchains come with a very large set of pre-compiled libraries
and programs. Therefore, Buildroot cannot import the sysroot of the toolchain, as it would contain hundreds of megabytes of
pre-compiled libraries that are normally built by Buildroot.

We also do not support using the distribution toolchain (i.e. the gcc/binutils/C library installed by your distribution) as the
toolchain to build software for the target. This is because your distribution toolchain is not a "pure" toolchain (i.e. only with the
C/C++ library), so we cannot import it properly into the Buildroot build environment. So even if you are building a system for a
x86 or x86_064 target, you have to generate a cross-compilation toolchain with Buildroot or crosstool-NG.

If you want to generate a custom toolchain for your project, that can be used as an external toolchain in Buildroot, our recom-
mendation is definitely to build it with crosstool-NG. We recommend to build the toolchain separately from Buildroot, and then
import it in Buildroot using the external toolchain backend.

Advantages of this backend:

* Allows to use well-known and well-tested cross-compilation toolchains.

* Avoids the build time of the cross-compilation toolchain, which is often very significant in the overall build time of an embed-
ded Linux system.

Drawbacks of this backend:

* If your pre-built external toolchain has a bug, may be hard to get a fix from the toolchain vendor, unless you build your external
toolchain by yourself using Crosstool-NG.

6.1.2.1 External toolchain wrapper

When using an external toolchain, Buildroot generates a wrapper program, that transparently passes the appropriate options
(according to the configuration) to the external toolchain programs. In case you need to debug this wrapper to check exactly what
arguments are passed, you can set the environment variable BR2_DEBUG_WRAPPER to either one of:

* 0, empty or not set: no debug
 1: trace all arguments on a single line

* 2: trace one argument per line

http://crosstool-ng.org
http://crosstool-ng.org
http://crosstool-ng.org

The Buildroot user manual 13/120

6.2 /dev management

On a Linux system, the /dev directory contains special files, called device files, that allow userspace applications to access the
hardware devices managed by the Linux kernel. Without these device files, your userspace applications would not be able to use
the hardware devices, even if they are properly recognized by the Linux kernel.

Under System configuration, /dev management, Buildroot offers four different solutions to handle the /dev direc-
tory :

* The first solution is Static using device table. This is the old classical way of handling device files in Linux. With this
method, the device files are persistently stored in the root filesystem (i.e. they persist across reboots), and there is noth-
ing that will automatically create and remove those device files when hardware devices are added or removed from the
system. Buildroot therefore creates a standard set of device files using a device table, the default one being stored in
system/device_table_dev.txt inthe Buildroot source code. This file is processed when Buildroot generates the final
root filesystem image, and the device files are therefore not visible in the out put /target directory. The BR2_ROOTFS_STATIC_]
option allows to change the default device table used by Buildroot, or to add an additional device table, so that additional
device files are created by Buildroot during the build. So, if you use this method, and a device file is missing in your sys-
tem, you can for example create a board/<yourcompany>/<yourproject>/device_table_dev.txt file that
contains the description of your additional device files, and then you can set BR2_ROOTFS_STATIC_DEVICE_TABLE to
system/device_table_dev.txt board/<yourcompany>/<yourproject>/device_table_dev.txt. For
more details about the format of the device table file, see Chapter 23.

* The second solution is Dynamic using devtmpfs only. devtmpfs is a virtual filesystem inside the Linux kernel that has been
introduced in kernel 2.6.32 (if you use an older kernel, it is not possible to use this option). When mounted in /dev, this
virtual filesystem will automatically make device files appear and disappear as hardware devices are added and removed from
the system. This filesystem is not persistent across reboots: it is filled dynamically by the kernel. Using devtmpfs requires
the following kernel configuration options to be enabled: CONFIG_DEVTMPFS and CONFIG_DEVTMPFS_MOUNT. When
Buildroot is in charge of building the Linux kernel for your embedded device, it makes sure that those two options are enabled.
However, if you build your Linux kernel outside of Buildroot, then it is your responsibility to enable those two options (if you
fail to do so, your Buildroot system will not boot).

* The third solution is Dynamic using devtmpfs + mdev. This method also relies on the devtmpfs virtual filesystem detailed
above (so the requirement to have CONFIG_DEVTMPFS and CONFIG_DEVTMPFS_MOUNT enabled in the kernel configura-
tion still apply), but adds the mdev userspace utility on top of it. mdev is a program part of BusyBox that the kernel will call
every time a device is added or removed. Thanks to the /etc/mdev.conf configuration file, mdev can be configured to
for example, set specific permissions or ownership on a device file, call a script or application whenever a device appears or
disappear, etc. Basically, it allows userspace to react on device addition and removal events. mdev can for example be used to
automatically load kernel modules when devices appear on the system. mdev is also important if you have devices that require
a firmware, as it will be responsible for pushing the firmware contents to the kernel. mdev is a lightweight implementation
(with fewer features) of udev. For more details about mdev and the syntax of its configuration file, see http://git.busybox.net/-
busybox/tree/docs/mdev.txt.

 The fourth solution is Dynamic using devtmpfs + eudev. This method also relies on the devtmpfs virtual filesystem detailed
above, but adds the eudev userspace daemon on top of it. eudev is a daemon that runs in the background, and gets called
by the kernel when a device gets added or removed from the system. It is a more heavyweight solution than mdev, but
provides higher flexibility. eudev is a standalone version of udev, the original userspace daemon used in most desktop Linux
distributions, which is now part of Systemd. For more details, see http://en.wikipedia.org/wiki/Udev.

The Buildroot developers recommendation is to start with the Dynamic using devtmpfs only solution, until you have the need
for userspace to be notified when devices are added/removed, or if firmwares are needed, in which case Dynamic using devtmpfs
+ mdev is usually a good solution.

Note that if systemd is chosen as init system, /dev management will be performed by the udev program provided by sy stemd.

6.3 init system

The init program is the first userspace program started by the kernel (it carries the PID number 1), and is responsible for starting
the userspace services and programs (for example: web server, graphical applications, other network servers, etc.).

http://git.busybox.net/busybox/tree/docs/mdev.txt
http://git.busybox.net/busybox/tree/docs/mdev.txt
http://en.wikipedia.org/wiki/Udev

The Buildroot user manual 14/120

Buildroot allows to use three different types of init systems, which can be chosen from System configuration, Init
system:

* The first solution is BusyBox. Amongst many programs, BusyBox has an implementation of a basic init program, which
is sufficient for most embedded systems. Enabling the BR2_INIT_BUSYBOX will ensure BusyBox will build and install its
init program. This is the default solution in Buildroot. The BusyBox init program will read the /etc/inittab file
at boot to know what to do. The syntax of this file can be found in http://git.busybox.net/busybox/tree/examples/inittab (note
that BusyBox inittab syntax is special: do not use a random inittab documentation from the Internet to learn about
BusyBox inittab). The default inittab in Buildroot is stored in system/skeleton/etc/inittab. Apart from
mounting a few important filesystems, the main job the default inittab does is to start the /etc/init.d/rcS shell script,
and start a getty program (which provides a login prompt).

* The second solution is systemV. This solution uses the old traditional sysvinit program, packed in Buildrootin package/sysvinit
This was the solution used in most desktop Linux distributions, until they switched to more recent alternatives such as Upstart
or Systemd. sysvinit also works with an inittab file (which has a slightly different syntax than the one from BusyBox).
The default inittab installed with this init solution is located in package/sysvinit/inittab.

 The third solution is systemd. systemd is the new generation init system for Linux. It does far more than traditional init
programs: aggressive parallelization capabilities, uses socket and D-Bus activation for starting services, offers on-demand
starting of daemons, keeps track of processes using Linux control groups, supports snapshotting and restoring of the system
state, etc. systemd will be useful on relatively complex embedded systems, for example the ones requiring D-Bus and
services communicating between each other. It is worth noting that sy stemd brings a fairly big number of large dependencies:
dbus, udev and more. For more details about systemd, see http://www.freedesktop.org/wiki/Software/systemd.

The solution recommended by Buildroot developers is to use the BusyBox init as it is sufficient for most embedded systems.
systemd can be used for more complex situations.

http://git.busybox.net/busybox/tree/examples/inittab
http://www.freedesktop.org/wiki/Software/systemd

The Buildroot user manual 15/120

Chapter 7

Configuration of other components

Before attempting to modify any of the components below, make sure you have already configured Buildroot itself, and have
enabled the corresponding package.

BusyBox
If you already have a BusyBox configuration file, you can directly specify this file in the Buildroot configuration, using
BR2_PACKAGE_BUSYBOX_CONFIG. Otherwise, Buildroot will start from a default BusyBox configuration file.

To make subsequent changes to the configuration, use make busybox-menuconfig to open the BusyBox configura-
tion editor.

It is also possible to specify a BusyBox configuration file through an environment variable, although this is not recom-
mended. Refer to Section 8.6 for more details.

uClibe
Configuration of uClibc is done in the same way as for BusyBox. The configuration variable to specify an existing config-
uration file is BR2_UCLIBC_CONFIG. The command to make subsequent changes is make uclibc-menuconfig.

Linux kernel
If you already have a kernel configuration file, you can directly specify this file in the Buildroot configuration, using
BR2_LINUX_KERNEL_USE_CUSTOM_CONFIG.

If you do not yet have a kernel configuration file, you can either start by specifying a defconfig in the Buildroot config-
uration, using BR2_LINUX_KERNEL_USE_DEFCONFIG, or start by creating an empty file and specifying it as custom
configuration file, using BR2_LINUX_KERNEL_USE_CUSTOM_CONFIG.

To make subsequent changes to the configuration, use make linux-menuconfig to open the Linux configuration
editor.

Barebox
Configuration of Barebox is done in the same way as for the Linux kernel. The corresponding configuration variables
are BR2_TARGET_BAREBOX_USE_CUSTOM_CONFIG and BR2_TARGET_BAREBOX_USE_DEFCONFIG. To open
the configuration editor, use make barebox-menuconfig.

U-Boot
Configuration of U-Boot (version 2015.04 or newer) is done in the same way as for the Linux kernel. The corresponding
configuration variables are BR2_TARGET_UBOOT_USE_CUSTOM_CONFIGand BR2_TARGET_UBOOT_USE_DEFCONFIG.
To open the configuration editor, use make uboot-menuconfig.

The Buildroot user manual

16/120

Chapter 8

General Buildroot usage

8.1 make tips
This is a collection of tips that help you make the most of Buildroot.
Display all commands executed by make:

$ make V=1 <target>

Display the list of boards with a defconfig:

$ make list-defconfigs

Display all available targets:

$ make help
Not all targets are always available, some settings in the . config file may hide some targets:

* busybox-menuconfig only works when busybox is enabled;
e linux-menuconfigand linux-savedefconfig only work when 1inux is enabled;

* uclibc—menuconfig is only available when the uClibc C library is selected in the internal toolchain backend;

* barebox-menuconfig and barebox—-savedefconfig only work when the barebox bootloader is enabled.

* uboot-menuconfigand uboot-savedefconfig only work when the U-Boot bootloader is enabled.

Cleaning: Explicit cleaning is required when any of the architecture or toolchain configuration options are changed.

To delete all build products (including build directories, host, staging and target trees, the images and the toolchain):

$ make clean

Generating the manual: The present manual sources are located in the docs/manual directory. To generate the manual:

The Buildroot user manual 17 /120

$ make manual-clean
S make manual

The manual outputs will be generated in output/docs/manual.

NOTES
* A few tools are required to build the documentation (see: Section 2.2).

Resetting Buildroot for a new target: To delete all build products as well as the configuration:

S make distclean

Notes If ccache is enabled, running make clean or distclean does not empty the compiler cache used by Buildroot. To
delete it, refer to Section 8.12.3.

Dumping the internal make variables: One can dump all the variables known to make, along with their values:

$ make -s printvars
VARIABLE=value_of_variable

It is possible to tweak the output using some variables:

e VARS will limit the listing to variables which names match the specified make-pattern
* QUOTED_VARS, if set to YES, will single-quote the value

* RAW_VARS, if set to YES, will print the unexpanded value

For example:

$ make -s printvars VARS=BUSYBOX_ $DEPENDENCIES
BUSYBOX_DEPENDENCIES=skeleton toolchain
BUSYBOX_FINAL_ ALIL DEPENDENCIES=skeleton toolchain
BUSYBOX_FINAL_DEPENDENCIES=skeleton toolchain
BUSYBOX_FINAL_PATCH_DEPENDENCIES=
BUSYBOX_RDEPENDENCIES=ncurses util-linux

$ make -s printvars VARS=BUSYBOX_S$DEPENDENCIES QUOTED_VARS=YES
BUSYBOX_DEPENDENCIES='skeleton toolchain'
BUSYBOX_FINAL_ALL_DEPENDENCIES='skeleton toolchain'
BUSYBOX_FINAL_DEPENDENCIES='skeleton toolchain'
BUSYBOX_FINAL_PATCH_DEPENDENCIES=''
BUSYBOX_RDEPENDENCIES='ncurses util-linux'

$ make -s printvars VARS=BUSYBOX_$%DEPENDENCIES RAW_VARS=YES

BUSYBOX_DEPENDENCIES=skeleton toolchain

BUSYBOX_FINAL_ALL_DEPENDENCIES=$ (sort $ (BUSYBOX_ FINAL_DEPENDENCIES) $(<«
BUSYBOX_FINAL_ PATCH DEPENDENCIES))

BUSYBOX_FINAL_DEPENDENCIES=S (sort $ (BUSYBOX_DEPENDENCIES))

BUSYBOX_FINAL_PATCH_DEPENDENCIES=$ (sort $(BUSYBOX_PATCH_DEPENDENCIES))

BUSYBOX_RDEPENDENCIES=ncurses util-linux

The Buildroot user manual 18/120

The output of quoted variables can be reused in shell scripts, for example:

$ eval $(make -s printvars VARS=BUSYBOX_DEPENDENCIES QUOTED_VARS=YES)
$ echo $BUSYBOX_DEPENDENCIES
skeleton toolchain

8.2 Understanding when a full rebuild is necessary

Buildroot does not attempt to detect what parts of the system should be rebuilt when the system configuration is changed through
make menuconfig, make xconfig or one of the other configuration tools. In some cases, Buildroot should rebuild the
entire system, in some cases, only a specific subset of packages. But detecting this in a completely reliable manner is very
difficult, and therefore the Buildroot developers have decided to simply not attempt to do this.

Instead, it is the responsibility of the user to know when a full rebuild is necessary. As a hint, here are a few rules of thumb that
can help you understand how to work with Buildroot:

* When the target architecture configuration is changed, a complete rebuild is needed. Changing the architecture variant, the
binary format or the floating point strategy for example has an impact on the entire system.

* When the toolchain configuration is changed, a complete rebuild generally is needed. Changing the toolchain configuration
often involves changing the compiler version, the type of C library or its configuration, or some other fundamental configuration
item, and these changes have an impact on the entire system.

* When an additional package is added to the configuration, a full rebuild is not necessarily needed. Buildroot will detect that
this package has never been built, and will build it. However, if this package is a library that can optionally be used by packages
that have already been built, Buildroot will not automatically rebuild those. Either you know which packages should be rebuilt,
and you can rebuild them manually, or you should do a full rebuild. For example, let’s suppose you have built a system with
the ctorrent package, but without openssl. Your system works, but you realize you would like to have SSL support in
ctorrent, so you enable the openssl package in Buildroot configuration and restart the build. Buildroot will detect that
openss1 should be built and will be build it, but it will not detect that ct or rent should be rebuilt to benefit from openssl
to add OpenSSL support. You will either have to do a full rebuild, or rebuild ctorrent itself.

* When a package is removed from the configuration, Buildroot does not do anything special. It does not remove the files
installed by this package from the target root filesystem or from the toolchain sysroot. A full rebuild is needed to get rid of
this package. However, generally you don’t necessarily need this package to be removed right now: you can wait for the next
lunch break to restart the build from scratch.

* When the sub-options of a package are changed, the package is not automatically rebuilt. After making such changes, rebuild-
ing only this package is often sufficient, unless enabling the package sub-option adds some features to the package that are
useful for another package which has already been built. Again, Buildroot does not track when a package should be rebuilt:
once a package has been built, it is never rebuilt unless explicitly told to do so.

* When a change to the root filesystem skeleton is made, a full rebuild is needed. However, when changes to the root filesystem
overlay, a post-build script or a post-image script are made, there is no need for a full rebuild: a simple make invocation will
take the changes into account.

Generally speaking, when you’re facing a build error and you’re unsure of the potential consequences of the configuration changes
you’ve made, do a full rebuild. If you get the same build error, then you are sure that the error is not related to partial rebuilds
of packages, and if this error occurs with packages from the official Buildroot, do not hesitate to report the problem! As your
experience with Buildroot progresses, you will progressively learn when a full rebuild is really necessary, and you will save more
and more time.

For reference, a full rebuild is achieved by running:

$ make clean all

The Buildroot user manual 19/120

8.3 Understanding how to rebuild packages

One of the most common questions asked by Buildroot users is how to rebuild a given package or how to remove a package
without rebuilding everything from scratch.

Removing a package is unsupported by Buildroot without rebuilding from scratch. This is because Buildroot doesn’t keep track
of which package installs what files in the output /staging and output/target directories, or which package would be
compiled differently depending on the availability of another package.

The easiest way to rebuild a single package from scratch is to remove its build directory in output/build. Buildroot will
then re-extract, re-configure, re-compile and re-install this package from scratch. You can ask buildroot to do this with the make
<package>-dirclean command.

On the other hand, if you only want to restart the build process of a package from its compilation step, you can run make
<package>-rebuild, followed by make or make <package>. It will restart the compilation and installation of the
package, but not from scratch: it basically re-executes make and make install inside the package, so it will only rebuild
files that changed.

If you want to restart the build process of a package from its configuration step, you can runmake <package>-reconfigure,
followed by make or make <package>. It will restart the configuration, compilation and installation of the package.

Internally, Buildroot creates so-called stamp files to keep track of which build steps have been completed for each package. They

are stored in the package build directory, output /build/<package>-<version>/ and are named . stamp_<step-name>.
The commands detailed above simply manipulate these stamp files to force Buildroot to restart a specific set of steps of a package
build process.

Further details about package special make targets are explained in Section 8.12.5.

8.4 Offline builds

If you intend to do an offline build and just want to download all sources that you previously selected in the configurator
(menuconfig, nconfig, xconfig or gconfig), then issue:

S make source

You can now disconnect or copy the content of your d1 directory to the build-host.

8.5 Building out-of-tree

As default, everything built by Buildroot is stored in the directory output in the Buildroot tree.

Buildroot also supports building out of tree with a syntax similar to the Linux kernel. To use it, add O=<directory> to the
make command line:

$ make O=/tmp/build

Or:

$ cd /tmp/build; make O=$PWD -C path/to/buildroot

All the output files will be located under /tmp/build. If the O path does not exist, Buildroot will create it.

Note: the O path can be either an absolute or a relative path, but if it’s passed as a relative path, it is important to note that it is
interpreted relative to the main Buildroot source directory, not the current working directory.

The Buildroot user manual 20/120

When using out-of-tree builds, the Buildroot . config and temporary files are also stored in the output directory. This means
that you can safely run multiple builds in parallel using the same source tree as long as they use unique output directories.

For ease of use, Buildroot generates a Makefile wrapper in the output directory - so after the first run, you no longer need to pass
O0=<...>and -C <...>,simply run (in the output directory):

$ make <target>

8.6 Environment variables

Buildroot also honors some environment variables, when they are passed to make or set in the environment:

* HOSTCXX, the host C++ compiler to use
* HOSTCC, the host C compiler to use

* UCLIBC_CONFIG_FILE=<path/to/.config>, path to the uClibc configuration file, used to compile uClibc, if an in-
ternal toolchain is being built.
Note that the uClibc configuration file can also be set from the configuration interface, so through the Buildroot . config file;
this is the recommended way of setting it.

* BUSYBOX_CONFIG_FILE=<path/to/.config>, path to the BusyBox configuration file.
Note that the BusyBox configuration file can also be set from the configuration interface, so through the Buildroot . config
file; this is the recommended way of setting it.

* BR2_CCACHE_DIR to override the directory where Buildroot stores the cached files when using ccache.

e BR2_DIL_DIR to override the directory in which Buildroot stores/retrieves downloaded files
Note that the Buildroot download directory can also be set from the configuration interface, so through the Buildroot . config
file. See Section 8.12.4 for more details on how you can set the download directory.

* BR2_GRAPH_ALT, if set and non-empty, to use an alternate color-scheme in build-time graphs
* BR2_GRAPH_OUT to set the filetype of generated graphs, either pd £ (the default), or png.
* BR2_GRAPH_DEPS_OPTS to pass extra options to the dependency graph; see Section 8.8 for the accepted options

* BR2_GRAPH_DOT_OPTS is passed verbatim as options to the dot utility to draw the dependency graph.

An example that uses config files located in the toplevel directory and in your SHOME:

$ make UCLIBC_CONFIG_FILE=uClibc.config BUSYBOX_CONFIG_FILE=$HOME/bb.config

If you want to use a compiler other than the default gcc or g++ for building helper-binaries on your host, then do

$ make HOSTCXX=g++-4.3-HEAD HOSTCC=gcc—4.3-HEAD

The Buildroot user manual 21/120

8.7 Dealing efficiently with filesystem images

Filesystem images can get pretty big, depending on the filesystem you choose, the number of packages, whether you provisioned
free space... Yet, some locations in the filesystems images may just be empty (e.g. a long run of zeroes); such a file is called a
sparse file.

Most tools can handle sparse files efficiently, and will only store or write those parts of a sparse file that are not empty.

For example:

* tar accepts the —S option to tell it to only store non-zero blocks of sparse files:

— tar cf archive.tar -S [files...] will efficiently store sparse files in a tarball
- tar xf archive.tar -S will efficiently store sparse files extracted from a tarball

* cp accepts the ——sparse=WHEN option (WHEN is one of auto, never or always):

- cp —-—sparse=always source.file dest.file will make dest.file a sparse file if source.file has
long runs of zeroes
Other tools may have similar options. Please consult their respective man pages.

You can use sparse files if you need to store the filesystem images (e.g. to transfer from one machine to another), or if you need
to send them (e.g. to the Q&A team).

Note however that flashing a filesystem image to a device while using the sparse mode of dd may result in a broken filesystem
(e.g. the block bitmap of an ext2 filesystem may be corrupted; or, if you have sparse files in your filesystem, those parts may not
be all-zeroes when read back). You should only use sparse files when handling files on the build machine, not when transferring
them to an actual device that will be used on the target.

8.8 Graphing the dependencies between packages

One of Buildroot’s jobs is to know the dependencies between packages, and make sure they are built in the right order. These
dependencies can sometimes be quite complicated, and for a given system, it is often not easy to understand why such or such
package was brought into the build by Buildroot.

In order to help understanding the dependencies, and therefore better understand what is the role of the different components in
your embedded Linux system, Buildroot is capable of generating dependency graphs.

To generate a dependency graph of the full system you have compiled, simply run:

make graph-depends

You will find the generated graph in output/graphs/graph-depends.pdf.

If your system is quite large, the dependency graph may be too complex and difficult to read. It is therefore possible to generate
the dependency graph just for a given package:

make <pkg>-graph-depends

You will find the generated graph in output /graph/<pkg>-graph-depends.pdf.

Note that the dependency graphs are generated using the dot tool from the Graphviz project, which you must have installed on
your system to use this feature. In most distributions, it is available as the graphvi z package.

By default, the dependency graphs are generated in the PDF format. However, by passing the BR2_GRAPH_OUT environment
variable, you can switch to other output formats, such as PNG, PostScript or SVG. All formats supported by the —T option of the
dot tool are supported.

The Buildroot user manual 22 /120

BR2_GRAPH_OUT=svg make graph—-depends

The graph—-depends behaviour can be controlled by setting options in the BR2_GRAPH_DEPS_OPTS environment variable.
The accepted options are:

* ——depth N, -d N, to limit the dependency depth to N levels. The default, 0, means no limit.

* ——stop-on PKG, —-s PKG, to stop the graph on the package PKG. PKG can be an actual package name, a glob, the keyword
virtual (to stop on virtual packages), or the keyword host (to stop on host packages). The package is still present on the graph,
but its dependencies are not.

e ——exclude PKG, -x PKG, like ——stop—on, but also omits PKG from the graph.

* ——transitive, ——no-transitive, to draw (or not) the transitive dependencies. The default is to not draw transitive
dependencies.

e ——colors R, T, H, the comma-separated list of colors to draw the root package (R), the target packages (T) and the host
packages (H). Defaults to: 1ightblue, grey, gainsboro

BR2_GRAPH_DEPS_OPTS='-d 3 --no-transitive --colors=red, green,blue' make graph-depends

8.9 Graphing the build duration

When the build of a system takes a long time, it is sometimes useful to be able to understand which packages are the longest to
build, to see if anything can be done to speed up the build. In order to help such build time analysis, Buildroot collects the build
time of each step of each package, and allows to generate graphs from this data.

To generate the build time graph after a build, run:

make graph-build
This will generate a set of files in output /graphs :

* build.hist-build.pdf, ahistogram of the build time for each package, ordered in the build order.

* build.hist-duration.pdf, ahistogram of the build time for each package, ordered by duration (longest first)
* build.hist-name.pdf, a histogram of the build time for each package, order by package name.

* build.pie-packages.pdf, a pie chart of the build time per package

* build.pie-steps.pdf, a pie chart of the global time spent in each step of the packages build process.

This graph—-build target requires the Python Matplotlib and Numpy libraries to be installed (python-matplotlib and
python—-numpy on most distributions), and also the argparse module if you're using a Python version older than 2.7
(python-argparse on most distributions).

By default, the output format for the graph is PDF, but a different format can be selected using the BR2_GRAPH_OUT environ-
ment variable. The only other format supported is PNG:

BR2_GRAPH_OUT=png make graph-build

The Buildroot user manual 23/120

8.10 Graphing the filesystem size contribution of packages

When your target system grows, it is sometimes useful to understand how much each Buildroot package is contributing to the
overall root filesystem size. To help with such an analysis, Buildroot collects data about files installed by each package and using
this data, generates a graph and CSV files detailing the size contribution of the different packages.

To generate these data after a build, run:

make graph-size
This will generat